
Technical report:
A prototype for reconfigurable GSPNs

Samir Tigane
LINFI Laboratory,

Computer Sciences Department
Biskra University, Algeria

Email: s.tigane@univ-biskra.dz

Laid Kahloul
LINFI Laboratory,

Computer Sciences Department
Biskra University, Algeria

Email: kahloul2006@yahoo.fr

Samir Bourekkache
LINFI Laboratory,

Computer Sciences Department
Biskra University, Algeria

Email: s.bourekkache@gmail.com

I. INTRODUCTION

We aim to develop a tool that deals with the reconfiguration
in generalized stochastic Petri nets (GSPNs) [4]. GSPNs
represent an extension of Petri nets (PNs) which allows to
verify qualitative properties (reachability, liveness, deadlock-
freedom, etc.) as well as quantitative properties (system
throughput, system reliability, machine utilization, etc). Thus,
GSPNs provide a suitable formal tool for the performance
evaluation of systems. However, GSPNs have a rigid structure
and are not able to specify intuitively reconfigurable systems.
We aim to propose a new extension of GSPNs suitable
for the formal modeling and verification of reconfigurable
systems, based on the improved net rewriting systems (INRSs)
formalism [3]. To this end, we have developed a tool that has
as inputs a GSPN that models an initial configuration and
a set of rules each of which models a possible change in
the structure of the reconfigurable net. Then, our tool applies
these rules to reconfigurable net and computes an isomorphic
Markov chain to reconfigurable net that describes its behavior.
Once the latter is completely constructed, the tool can compute
the quantitative properties such as: throughput of a transition,
mean number of tokens in a place, the mean sojourn time at
a marking, etc.

II. DESCRIPTION

In the following, we give a basic description of developed
classes, their important fields and methods.

A. Place

This class allows to create an instance of a place.
Fields

public String IP;
//This is a place label.
public int MP;
//This is a place marking.

Methods

public Place(String p,int m);

This method is used to create an instance of a place, where p
is a place label and m is a place marking.

public boolean equals(Place p);

This method is used to compare two places, where p is the
place to be compared with. It returns True if two places are
having same label and marking.

B. Transition

This class allows to create an instance of a transition.
Fields

public String IT;
//This is a transition label.
public Transition.Type type;
//This is a transition type: timed or

immediate.
public double rate;
//This is a transition rate/weight.

Methods

public Transition(String l, Transition.Type
t, double r);

This method is used to create an instance of a transition,
where l is a transition label, t is a transition type : timed
or immediate, and r is a transition rate/weight.

public boolean equals(Transition t);

This method is used to compare two transitions, where t is
a transition to be compared with. This method returns True if
two transitions are having same label, rate and type.

C. Rule

This class allows to create an instance of a rule.
Fields

public GSPN L;
//This is a left-hand side.
public GSPN R;
//This is a right-hand side.
public ArrayList<GSPN> NAC;
//This is a list of negative application

conditions.
public String[] IL;



//This is an input interface of left-hand
side.

public String[] OL;
//This is an output interface of left-hand

side.
public String[] IR;
//This is an input interface of right-hand

side.
public String[] OR;
//This is an output interface of right-hand

side.
public double weight;
//This is a weight application of rule.
public String ID;
//This is an identifier of rule.
public Place[] activatingMarking;
//This is an activator marking that controls

rule application.

Methods

public Rule(String ID, GSPN L, GSPN R,
ArrayList<GSPN> NAC, String[] IL,
String[] OL, String[] IR, String[] OR,
double weight, Place[] AM);

This method is used to create an instance of a rule, where ID
is an identifier of rule, L is a left-hand side, R is a right-hand
side, NAC is a list of negative application conditions, IL is an
input interface of left-hand side, OL is an output interface of
left-hand side, IR is an input interface of right-hand side, OR
is an output interface of right-hand side, weight is a weight
application of rule, and AM is an activator marking that controls
rule application.

public boolean isInIL(String n);

This method is used to check whether a node belongs to input
nodes of left-hand side of a rule, where n is a node label. It
returns True if node n belongs to input nodes of left-hand side
of a rule.

public boolean isInOL(String n);

This method is used to check whether a node belongs to output
nodes of left-hand side of a rule, where n is a node label. It
returns True if node n belongs to output nodes of left-hand
side of a rule. Analogously to methods isInIR and isInOR
with respect to right-hand side are defined.

D. GSPN

This class allows to (i) create an instance of a GSPN from
a PNML file describing its structure and (ii) compute its
reachability graph. As well, it allows to compute quantitative
properties, such as: mean number of tokens, token probability
density, throughput, etc.
Methods

public GSPN(Place[] setOfP, Transition[]
setOfT, int[][] pr, int[][] po);

This method is used to create an instance of a GSPN, where
setOfP is a set of places, setOfT is a set of transitions, pr
is presets of transitions and po is postsets of transitions.

public GSPN(String xFile);

This method is used to create an instance of a GSPN, where
xFile is the path of PNML file containing the description of
a GSPN created by a third-party.

public int getNumberOfTangibleStates();

This method is used to get the number of tangible states in
reachability graph.

public int getNumberOfStates();

This method is used to get the number of states in reachability
graph.

public boolean isFireable(String t, Place[]
M);

This method is used to check whether a transition t is fireable
at a marking M.

public void fire(String t);

This method is used to fire a transition t at current marking
of a GSPN.

public Place[] getMarkingAfterFiring(String
t, Place[] M);

This method is used to compute obtained marking after firing
a transition t at marking M.

public JSONArray getReachabilityGraph();

This method is used to get a reachability graph as a JSON
object.

public JSONArray getMarkingsDistProba();

This method is used to get a marking distribution probability.

public JSONArray getMeanNumberOfTokens();

This method is used to get mean number of tokens.

public JSONArray getTokenProbabilityDensity();

This method is used to get token probability density.

public JSONArray
getProbabilitiesFiringTransition();

This method is used to get firing transition probability density.

public JSONArray getThroughputOfTransitions();

This method is used to get throughput of transitions.



public JSONArray getMeanSojournTime();

This method is used to get mean sojourn time.

E. RecGSPN

This class allows to create an instance of a reconfigurable
generalized stochastic Petri net describing its dynamic struc-
ture. As well, it allows to apply rules to reconfigurable nets and
compute their quantitative properties, such as: mean number
of tokens, token probability density, throughput, etc. Methods

public RecGSPN(GSPN G0, ArrayList<Rule>
setOfRules);

This method is used to create an instance of a RecGSPN,
where G0 is a initial configuration, and setOfRules is a
list of rules.

public boolean isApplicable(Rule r, GSPN G,
Place[] M);

This method is used to check whether a rule r is applicable
to a GSPN G at a marking M.

public GSPN getGSPNAfterApplayingRule(Rule r,
GSPN G, Place[] M);

This method is used to compute obtained GSPN after applying
a rule r to a GSPN G at marking M.

public int getNumberOfTangibleStates();

This method is used to get the number of tangible states in
reachability graph.

public JSONArray getReachabilityGraph();

This method is used to get reachability graph.

public JSONArray getMarkingsDistProba();

This method is used to get marking distribution probability.

public JSONArray getMeanNumberOfTokens();

This method is used to get mean number of tokens.

public String[][]
getMeanNumberOfTokensAsMatrix();

This method is used to get mean number of tokens as matrix.

public JSONArray getTokenProbabilityDensity();

This method is used to get token probability density.

public String[][]
getTokenProbabilityDensityAsMatrix();

This method is used to get token probability density as matrix.

public JSONArray
getProbabilitiesFiringTransition();

This method is used to get firing transition probability density.

public String[][] getTransitionsStat();

This method is used to get firing transition probability density
and throughputs as matrix.

public JSONArray getThroughputOfTransitions();

This method is used to get throughput of transitions.

public JSONArray getMeanSojournTime();

This method is used to get mean sojourn time.

III. DEMONSTRATION

In this section, we demonstrate how to model/verify (quan-
titatively) a reconfigurable net. First, the user can use a third-
party tool to create a GSPN that models an initial configuration
of a reconfigurable net. Note that the GSPN must be described
by the standard format PNML as used by PIPE tool [1]. As
well, left- and right-hand sides of each rule are GSPNs that
can be created by a third-party tool.

Let us consider a reconfigurable system composed of ma-
chine M1 permanently active and machine M2 which is acti-
vated when the number of raw materials in the buffer (having
ten spaces) exceeds five. The initial configuration containing
M1 is highlighted in Fig. 1. The interpretation of places and
transitions is given as follows.

1) as (resp. rm): Its marking represents the number of free
spaces (resp. raw materials) in the buffer.

2) m1 (resp. m′1): A token in m1 (resp. m′1) means that
machine M1 has begun (resp. has finished) processing.

3) m1 f : A token in m1 f means that machine M1 is idle.
4) ra: Raw material is loaded in the central buffer.
5) ld1: M1 loads an item from the buffer.
6) m1 p: Machine M1 is processing.
7) uld1: M1 unloads a product.

Fig. 1: Initial configuration.

Once the number of raw materials in the buffer exceeds
five, machine M2 is activated and the system switches to its
second configuration. This reconfiguration is modeled by a rule
r1, where its left- and right-hand sides are shown in Figs. 2



and 3, its input nodes are ({ld1},{ld1,ld2}), and its output
nodes are ({uld1},{uld1,uld2}).

Fig. 2: Left-hand side of rule r1 and right-hand side of rule
r2.

Fig. 3: Right-hand side of rule r1 and left-hand side of rule
r2.

Consider the following code.

1 import java.util.ArrayList;
2 public class Main {
3 public static void main(String[]

args) {
4 GSPN G= new GSPN("C_0.xml"),
5 L1=new GSPN("L_1.xml"),
6 R1=new GSPN("R_1.xml"),
7 L2=new GSPN("L_2.xml"),
8 R2=new GSPN("R_2.xml");
9

10 String[]IL1={"ld1"};
11 String[]OL1={"uld1"};
12 String[]IR1={"ld1","ld2"};
13 String[]OR1={"uld1","uld2"};
14 Place[] am1=new Place[5];
15 am1[0]=new Place("as",0);
16 am1[1]=new Place("rm",6);
17 am1[2]=new Place("m1",0);
18 am1[3]=new Place("m1’",0);
19 am1[4]=new Place("m1f",1);
20 ArrayList<GSPN> NAC1=new

ArrayList();
21 NAC2.add(L2);
22
23 Rule r1 = new Rule("r1", L1, R1,

NAC1, IL1, OL1, IR1, OR1, 2,
am1);

24
25 String[]IL2={"ld1","ld2"};
26 String[]OL2={"uld1","uld2"};

27 String[]IR2={"ld1"};
28 String[]OR2={"uld1"};
29 Place[] am2=new Place[8];
30 am2[0]=new Place("as",10);
31 am2[1]=new Place("rm",0);
32 am2[2]=new Place("m1",0);
33 am2[3]=new Place("m1’",0);
34 am2[4]=new Place("m1f",1);
35 am2[5]=new Place("m2",0);
36 am2[6]=new Place("m2’",0);
37 am2[7]=new Place("m2f",1);
38 Rule r2 = new Rule("r2", L2, R2,

null, IL2, OL2, IR2, OR2, 2,
am2);

39
40 ArrayList<Rule> lr= new

ArrayList<>();
41 lr.add(r1);
42 lr.add(r2);
43
44 RecGSPN rgspn = new RecGSPN(G,lr);
45 System.out.println
46 (rgspn.getNumberOfGSPNs());
47 System.out.println
48 (rgspn.getNumberOfStates());
49 System.out.println
50 (rgspn.getMeanNumberOfTokens());
51 System.out.println
52 (rgspn.getProbabilitiesFiringTransition());
53 System.out.println
54 (rgspn.getThroughputOfTransitions());
55 }
56 }

L1 (left-hand side) and R1 (right-hand side) of r1 are
instantiated at Lines (5) and (6), respectively. Input and output
nodes of L1 are defined as arrays of String at Lines (10) and
(11). As well, input and output nodes of R1 are defined at
Lines (12) and (13). Aforementioned, rule r1 is applicable
to initial configuration when the number of raw materials
in the buffer exceeds five. The activator marking of rule r1
is defined as an array of Place at Lines (14)–(19). The
instruction at Line (16) states that the marking of place rm
(its marking models the number of raw materials in the buffer)
is six. Finally, rule r1 is instantiated at Line (23), where its
set of negative application conditions [2] contains L2 (Fig. 3).
Indeed, r1 is not applicable if machine M2 is already activated.

Once the buffer is empty, the system switches to its initial
configuration. This switching is modeled by rule r2, where
its left- and right hand sides are depicted in Figs. 3 and 2,
respectively.

L2 (left-hand side) and R2 (right-hand side) of r2 are
instantiated at Lines (7) and (8), respectively. Input and output
nodes of L2 are defined as arrays of String at Lines (25)
and (26). As well, input and output nodes of R2 are defined
at Lines (27) and (28). Rule r2 is applicable to second
configuration when the buffer is empty. The activator marking
of rule r2 is defined as an array of Place at Lines (29)–
(37). The instruction at Line (30) states that the marking of
place as (its marking models the number of available spaces in
the buffer) is ten. Finally, rule r2 is instantiated at Line (38),



where its set of negative application conditions is empty.
Rule r1 and r2 are inserted into list lr at Lines (41) and

(42) to create a set of rules.
The reconfigurable net is instantiated at Line (44), where its

set of rules is lr and its initial configuration is G instantiated
at Line (4).

Finally, we can compute different parameters, such as the
number of obtained GSPNs after applying the set of rules to
the initial configuration, the number of states in the isomorphic
Markov chain, the mean number of tokens at each place, etc.

The result of execution of the code in above is the following.

2//The number of obtained GSPNs after
applying the set of rules to the initial
configuration.

96//The number of states in the isomorphic
Markov chain

//The mean number of tokens at each place
[{"values":8.163158068311944,"id":"as"},
{"values":0.8025364509473432,"id":"m1"},
{"values":0.0,"id":"m1’"},
{"values":0.19746354905265673,"id":"m1f"},
{"values":1.8368419316880582,"id":"rm"},
{"values":0.1929087837708813,"id":"m2"},
{"values":0.0,"id":"m2’"},
{"values":0.012781191714198437,"id":"m2f"}]

//Firing transition probability
[{"values":0.37306141543396915,"id":"m1p"},
{"values":0.5602739943546192,"id":"ra"},
{"values":0.06666459021141184,"id":"m2p"}]

//Transition throughput
[{"values":0.8025364509473432,"id":"m1p"},
{"values":0.9954452347188375,"id":"ra"},
{"values":0.1929087837708813,"id":"m2p"}]

IV. OTHER EXAMPLES

A. Example 1: A Reconfigurable Manufacturing System (RMS)

In this section, we illustrate how to apply our proposed
method on an example of an RMS. First, we present the RMS
and give a description of its behavior. Second, we apply a set
of rules in order to reconfigure the initial RMS. In this case
study, we consider an RMS that is composed of one robot
with a capacity of one space, a buffer for each machine with
capacity of 3 spaces, an exit zone used to hold products that
have already finished their processing, 2 machines that operate
in parallel and cooperate to product a variety of products, and
a special buffer space used to recover the potential deadlocks.

The Robot has a random access to any part in the buffer or
in the exit zone, and it can move the products from/to the exit
zone, the machine M1, the machine M2, the buffer bu f1, and
the buffer bu f2.

A product Pct can be processed by the two machines, or by
only one machine. The system products four types of products
A, B, C, and D. Product A (resp. B) is processed only by
machine M1 (resp. M2). Product C (resp. D) is processed firstly

buf1
rm1

w1

lda pal pA paf ulda

ld′a pa′l pA′ pa′f

uld′a
m1f

buf2
rm2 w2

ld′b pb′l pB′ pb′f

uld′b

ldb pbl pB pbf uldb

m2f

exz
pdep

switching

Fig. 4: GSPN model of the RMS.

by machine M1 (resp. M2) and finally by machine M2 (resp.
M1).

When an item I arrives at the RMS, it enters bu f1 (resp.
bu f2) to be processed by machine M1 (resp. M2) , and it waits
until the downstream machine to be free (downstream machine
means the next machine that the product will visit). If the
downstream machine Mi is idle and there is no item W in
buffer bu fi or in M j waiting for Mi, the robot loads I into Mi.
When a machine Mi becomes free, and if there is an item W
in the buffer waiting for Mi, then the robot loads W into Mi.
When a machine Mi finishes the first step of processing of an
intermediate product IP, and if there is a free buffer space in
bu f j then the robot puts IP in bu f j, otherwise machine Mi
maintains holding IP. When a buffer space becomes free in
bu fi (resp. bu f j), and if machine M j (resp. Mi) is holding an
item W which is waiting for Mi (resp. M j) to be free, then
the robot loads W into the buffer bu fi. When a machine Mi
finishes the final processing step of a product Pct, the robot
unloads Pct into the exit zone.

The described RMS is modeled by GSPN depicted in Fig. 4.
The meanings of places and transitions of this GSPN, are given
as follows :

• Places
– bu f1 (resp. bu f2): The number of tokens, inside this

place, models the number of free buffer spaces in
b f1 (resp. b f2).

– m1 f (resp. m2 f ): A token in m1 f (resp. m2 f ) means
that the machine M1 (resp. M2) is idle.

– w1 (resp. w2): The number of tokens in w1 (resp. w2)
models the number of items waiting, at the buffer
bu f1 (resp. bu f2), to be processed by machine M1
(resp. M2).

– pal/pa′l (resp. pbl/pb′l): A token in pal/pa′l (resp.
pbl/pb′l) models that an item is loaded into machine
M1 (resp.M2).

– pa f (resp. pb f ): A token in pa f (resp. pb f ) models
that machine M1 (resp. M2) has finished producing
product Pct.

– pa′f (resp. pb′f ): A token in pa′f (resp. pb′f ) models
that machine M1 (resp. M2) has finished producing



an intermediate product IP.
– exz: The number of tokens in this place is the number

of finished products at the exit zone, in the current
time.

• Transitions :
– rm1 (resp. rm2): Raw material is loaded in buffer

bu f1 (resp. bu f2).
– lda/ld′a (resp. ldb/ld′b): The robot loads an item into

machine M1 (resp. M2).
– pA (resp. pB): Machine M1 (resp. M2) has finished

processing a product Pct.
– pA′ (resp. pB′): Machine M1 (resp. M2) has finished

processing an intermediate product IP.
– ulda (resp. uldb): The robot unloads final product Pct

from machine M1 (resp. M2) to the exit zone.
– uld′a (resp. uld′b): The robot unloads intermediate

product IP from machine M1 (resp. M2) to buffer
bu f2 (resp. bu f2).

– pdep: Final product Pct exits the RMS.
– switching: The robot switches an intermediate prod-

uct IP held by machine M1 and an intermediate
product IP′ held by machine M2.

The robot uses a special buffer space to switch intermediate
products which are held by M1 and M2, hence when an item
has, finally, finished its processing by two machines it can
be unloaded to the exit zone, yielding its place to another
waiting item in the buffer. This switching is performed when a
deadlock occurs. The deadlock situation is represented by this
marking (M(bu f1) = 0,M(bu f2) = 0,M(pa′f ) = 1,M(pb′f ) =
1). This means that the number of free spaces in bu f1 and bu f2
is zero, and machine Mi is holding an intermediate product
waiting for M j.

We aim now to reconfigure the RMS presented above by
adding a new machine M3. This machine cooperates with ma-
chine M2 to perform extra treatments on intermediate products
IP treated already by M2 (i.e., machine M2 has finished the
first treatment on IP). This reconfiguration is illustrated and
modeled by GSPN shown in Fig. 8. This GSPN model is
obtained by applying three rules on GSPN presented in Fig. 4,
these rules are described in the following.

Machine M3 operates when machine M2 has finished pro-
cessing an intermediate product, this event is modeled by firing
of transition pB′ and deposing a token in place pb′f . Once
machines M3 and M2 have finished their treatment on the
intermediate product, this later can be loaded in buffer bu f1.
This modification is reflected in GSPN model shown in Fig. 8
by applying three rules, as follows :

1) r1: Substitute place pb′f in GSPN model G0 in Fig. 4 by
(OSM) net block [5] presented in Fig. 5(R1). A subnet
of the resulting graph G1 is shown in Fig. 5.

2) r2: Substitute immediate transition pB′′ in G1 by (CMG)
net block [5] illustrated in Fig. 6(R2). The resulting
graph is called G2.

3) r3: Substitute subnet sn = {uld′′b , pb′′f ,uld′b} in G2 by a
ST net block [5], where T = T 1 = {uld′b}. The resulting

pB′

pb′f

uld′b

(subnet of G0)

ṗ

(L1)

pb′w pB′′ pb′′f

(R1)

pB′ pb′w pB′′ pb′′f uld′b

(subnet of G1)

1

Fig. 5: Applying r1 on G0.

pB′ pb′w

pB′′

pb′′f uld′b

(subnet of G1)

Ṫ

(L2)

ld′′b pb′′l pB′′ pb′f uld′′b

m3f

(R2)

pB′ pb′w ld′′b pb′′l pB′′ pb′f uld′′b

m3f

pb′′f uld′b

(subnet of G2)

1

Fig. 6: Applying r2 on G1.

graph is shown in Fig. 8.

The obtained GSPN model G3 after applying three rules r1,
r2 and r3 is shown in Fig. 8. The meaning of the new places
and transitions is described as follows.

pB′ pb′w ld′′b pb′′l pB′′ pb′f

uld′′b

m3f

pb′′f uld′b
(subnet of G2)

t0 p0 t1

(L3)

uld′b

(R3)

pB′ pb′w ld′′b pb′′l pB′′ pb′f

uld′b

m3f

(subnet of G3)

1

Fig. 7: Applying r3 on G2.



• Places
– pb′w: A token in pb′w models that machine M2 has

finished the first processing on immediate product
IP.

– pb′′l : A token in pb′′l models that an immediate
product IP is loaded into machine M3.

– m3 f : A token in m3 f models that machine M3 is idle.
• Transitions

– ld′′b : The robot loads an intermediate product IP into
machine M3.

– pB′′: Machines M2 and M3 have finished processing
an intermediate product IP.

bu
f
1

rm
1

w
1

ld
a

pa
l
pA

pa
f
u
ld

a

ld ′a
pa ′l

pA
′
pa ′f

u
ld ′a

m
1
f

bu
f
2

rm
2
w
2

ld ′b
pb ′l

pB
′
pb ′w

ld ′′b
pb ′′l

pB
′′
pb ′f

u
ld ′b

m
3
f

ld
b

pb
l
pB

pb
f
u
ld

b

m
2
f

ex
z

p
d
ep

sw
itch

in
g

Fig. 8: Final RMS model after applying rules r1, r2 and r3.

B. Example 2: Data Center
In this subsection, we illustrate the application of the

proposed formalism on a data center case study. Firstly, we
give a description of the structure and the behavior of the data
center. Secondly, we show how to apply a set of rules in order
to reconfigure the initial model of the data center and how to
evaluate its performance.

In this case study, we consider a data center composed of
three servers S1,S2,S3, and two buffers (i) bu fh with capacity
of p spaces that receives jobs with high priority and (ii)
bu fn with capacity of q spaces that receives jobs with normal
priority. Both of buffers are implemented with the policy
“Fist In First Out”. Server S1 treats jobs with high priority,
whereas Server S2 is dedicated to jobs with normal priority. In
sake of reducing the power consumption, Server S3, initially,
is standby. It starts working when the number of waiting
prioritized (resp. normal) jobs exceeds the threshold Sh (resp.
Sn). The system has three configurations and the switching
from configuration to another is conducted according to the
number of waiting jobs.

The described date center, at its first configuration, is
modeled by the GSPN C0 depicted in Fig. 9.

p − HH_B

H_A

H

H_J L_1 S_1 S_1_p S_1’ UL_1

S_1_F

q − NN_B

N_A

N

N_J L_2 S_2 S_2_p S_3’ UL_2

S_2_F

Fig. 9: Configuration C0 where H < Sh and N < Sn.

The description of places and transitions at configuration C0
model are given in Table I.

Place Description
H_B The number of tokens, inside this place, models the number of available spaces in buffer bu fh
H_J The number of tokens models the number of waiting jobs with high priority
N_B The number of tokens, inside this place, models the number of available spaces in buffer bu fn
N_J The number of tokens models the number of waiting jobs with normal priority
S_1 A token in S_1 means that S1 has begun treating a job
S_2 A token in S_2 means that S2 has begun treating a job
S_1’ A token in S_1’ means that S1 has finished treating a job
S_2’ A token in S_2’ means that S2 has finished treating a job
S_1_F A token in S_1_F means that S1 is idle
S_2_F A token in S_2_F means that S2 is idle
Transition Description
H_A Arrival of a job with high priority
N_A Arrival of a job with normal priority
L_1 S1 loads a job from buffer bu fh
L_2 S2 loads a job from buffer bu fn
S_1_p S1 processes a prioritized job
S_2_p S2 processes a normal job
UL_1 S1 unloads a finished job
UL_2 S2 unloads a finished job

TABLE I: Meanings of places and transitions at configuration
C0.

Once the number of waiting jobs with high priority exceeds
the threshold Sh Server S3 is activated which yields the second
configuration. After its activation, Server S3 joins Server S1 in
treating prioritized jobs. This configurations is illustrated in
Fig. 10.

p − HH_B

H_A

H

H_J

L_1 S_1 S_1_p S_1’ UL_1

S_1_F

L_3 S_3 S_3_p S_3’ UL_3

S_3_F

q − NN_B

N_A

N

N_J L_2 S_2 S_2_p S_2’ UL_2

S_2_F

Fig. 10: Configuration C1 where Sh ≤ H

The system switch to the third configuration C2 if the
number of waiting jobs with normal priority is bigger than
threshold Sn and the number of prioritized jobs is less than
Sh. In this configuration C3, Server S2 and Server S3 along
together process jobs with normal priority. This configurations
is shown in Fig. 11.

q − NN_B

N_A

N

N_J

L_3 S_3 S_3_p S_3’ UL_3

S_3_F

L_2 S_2 S_2_p S_2’ UL_2

S_2_F

p − HH_B

H_A

H

H_J L_1 S_1 S_1_p S_1’ S_1

S_1_F

Fig. 11: Configuration C2 where Sn ≤ N.

The description of the new places and transitions in config-
urations C1 and C2 are given in Table II.



Place Description
S_3 A token in S_3 means that S3 has begun treating a job
S_3’ A token in S_3’ means that S3 has finished treating a job
S_3_F A token in S_3_F means that S3 is idle
Transition Description
L_3 S3 loads a job
S_3_p S3 processes a job
UL_3 S3 unloads a finished job

TABLE II: Meanings of the new places and transitions at
configurations C1 and C2.

1) Rewriting rules of the system reconfigurations: In this
subsection, we model RecGSPN based reconfiguration of the
described system. First, we reconfigure the configuration C0 to
get the second configuration. This reconfiguration is illustrated
and modeled by GSPN C1 shown in Fig. 10. C1 is obtained
by applying rule r1 on C0 as follows.

L_1 S_1 S_1_p S_1’ UL_1

S_1_F

(a) L1

L_1 S_1 S_1_p S_1’ UL_1

S_1_F

L_3 S_3 S_3_p S_3’ UL_3

S_3_F

(b) R1

Fig. 12: Left-hand side and Right-hand side of r1

Rule r1 means to substitute the mapping at C0 of its left-
hand side depicted in Fig. 12a by its right-hand side shown in
Fig. 12b. Applying of rule r1 models the activation of Server
S3.

Once buffer bufh is empty, Server S3 will be deactivated.
This reconfiguration is obtained by applying rule r2 on C1, the
resulting GSPN is C0.

L_1 S_1 S_1_p S_1’ UL_1

S_1_F

L_3 S_3 S_3_p S_3’ UL_3

S_3_F

(a) L2

L_1 S_1 S_1_p S_1’ UL_1

S_1_F

(b) R2

Fig. 13: Left-hand side and Right-hand side of r2

Rule r2 means to substitute the mapping at C1 of its left-
hand side depicted in Fig. 13a by its right-hand side depicted
in Fig. 13b.

Aforementioned, when the number of waiting normal jobs
exceeds threshold Sn and Server S3 is not yet activated (i.e., the
number of waiting jobs with high priority is less than threshold
Sh), Server S3 is activated to join Server S2 in processing
normal jobs. This reconfiguration is modeled by GSPN C2
shown in Fig. 11. C2 is obtained by applying rule r3 on C0 as
follows.

L_2 S_2 S_2_p S_2’ UL_2

S_2_F

(a) L3

L_2 S_2 S_2_p S_2’ UL_2

S_2_F

L_3 S_3 S_3_p S_3’ UL_3

S_3_F

(b) R3

Fig. 14: Left-hand side and Right-hand side of r3

Rule r3 means to substitute the mapping at C0 of its left-
hand side depicted in Fig. 14a by its right-hand side shown in
Fig. 14b.

Once buffer bu fn is empty, Server S3 will be deactivated.
This reconfiguration is obtained by applying rule r4 on C2, the
resulting GSPN is C0.



L_2 S_2 S_2_p S_2’ UL_2

S_2_F

L_3 S_3 S_3_p S_3’ UL_3

S_3_F

(a) L4

L_2 S_2 S_2_p S_2’ UL_2

S_2_F

(b) R4

Fig. 15: Left-hand side and Right-hand side of r4

Rule r4 means to substitute the mapping at C2 of its left-
hand side depicted in Fig. 15a by its right-hand side depicted
in Fig. 15b.

V. CONCLUSION

In this report, we have presented a tool that implements sev-
eral classes used to model/verify reconfigurability in GSPNs.
This tool allows to define a set of rules each of which has
left- and right-hand sides. Theses rules are applied to an
initial configuration of a reconfigurable net, and therefor an
isomorphic Markov chain is computed. Once the latter is
completely constructed, we can compute several quantitative
properties.

In future version of this tool, we are interested to develop
an integrated tool that allows to users to model GSPNs, left-
and right-hand sides of rules and to plot charts of different
quantitative properties.

REFERENCES

[1] Nicholas J. Dingle, William J. Knottenbelt, and Tamas
Suto. PIPE2: A tool for the performance evaluation of
generalised stochastic Petri nets. SIGMETRICS Perform.
Eval. Rev., 36(4):34–39, 2009.

[2] Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Con-
flict detection for graph transformation with negative ap-
plication conditions. In Graph Transformations, pages 61–
76, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[3] Jun Li, Xianzhong Dai, Zhengda Meng, Jianping Dou, and
Xianping Guan. Rapid design and reconfiguration of Petri
net models for reconfigurable manufacturing cells with
improved net rewriting systems and activity diagrams.
Computers & Industrial Engineering, 57(4):1431–1451,
2009.

[4] Marco Ajmone Marsan, G. Balbo, Gianni Conte, S. Do-
natelli, and G. Franceschinis. Modelling with Generalized
Stochastic Petri Nets. John Wiley & Sons, Inc., New York,
NY, USA, 1st edition, 1994.

[5] S. Tigane, L. Kahloul, and S. Bourekkache. Net rewriting
system for GSPN a RMS case study. In Proc. of ICAASE,
pages 38–45. IEEE, Oct 2016.


