Chapter 4

Sequential Structures

4.1 Introduction to dynamic memory allocation

4.1.1 Problem of static arrays

Indeed, working with static arrays in algorithms allows us resolving several kinds of
problems. This was presented in the three first chapters of the course. However, static

arrays suffer from two basic disadvantages:

e They are rigid: this means that the size of the array must be predefined before the
compiling of the program. Thus, we have to define the static size of the array, then
this size can no more change during the execution of the program. To update the
size, we have to stop the execution of the program then re-edit the program and so
on. It is clear that this situation cause un-efficiency of the programming, because it
is possible that we don’t know previously the suitable required size, so that we can
be in a situation where an extra size is predefined then it will be not used (losing
unused memory during the execution of the program), or the predefined size is less
than the required memory which makes the execution of the program impossible.
As an example, suppose we want to solve the following problem: "Find all prime
numbers from 1 to n and store them in memory". The problem lies in the choice of
the reception structure. If we use an array, it is not possible to define the size of this
array precisely even if we know the value of n (for example 10000). We are therefore,

here, faced with a problem where the reservation of space must be dynamic.

e They are contiguous: Besides being rigid with an unchangeable size, static arrays are

supposed to be contiguous. That is to say that each element of index 7 immediately

25

follows in memory the previous element of index ¢ — 1. This means that the sequence
of array cells must be recorded in a sequence of free cells in the machine’s memory.
In this case, it will be not possible to execute the program unless we have enough

contiguous free space memory to save our arrays.

4.1.2 How to resolve the problem

It is clear that we are looking for a dynamic allocation of the memory instead of static,
predefined and unchangeable reservation. We are interested to provide the programmer
with the ability to reserve (or allocate) memory dynamically, according to his needs. The
programmer should have also the ability to release (or free) the unused memory at any time.
This dynamic allocation and release of the memory will be realized during the execution of
the program, ensuring more efficient management of the memory and allowing the execution
of any kinds of programs even the required memory space is unknown previously. To ensure
this property, we introduce a new kind of type (Pointers) with new set of operations in

the next item of this section.

4.1.3 Introducing the Pointer type

1. Definition: a Pointer is a variable which has a specific value. This value is an
address (or a reference) that points (or refers) to another memory area (a memory cell, for
example) which contains another value belonging to some other type (integer, float, string,

or even another Pointer). Figure 4.1.3 shows this situation.

ptr <«————— the name of the pointer

Ox7fffa0757dd4

0x7fff98b499e8 4—— Address of pointer ptr

10 < Value of variable X

Ox7fffa0757dd4 4—— — Address of variable X

Figure 4.1: A pointer and the pointed value

In this figure, we have a pointer called ptr that is created and saved in a memory cell

26

with the address 0x7fff98b499e8. This pointer ptr refers (or points) to another memory
cell (address: 0x7{ffa0757dd4) which contains an integer value called X and with the value
10. As showed, the address of X represents the value of ptr and we say that pointer ptr

points variable X. Next, we will present the set of operations to be used on the type pointer.

2. Operations:

Three kinds of operations are possible:

e The declaration of the pointer: This is done as any other variable declaration. It

is done as follows:

— var p:Pointer; //In this case, p is a general pointer that can point on all types

of variables.

— var p:Pointer(Basic_ Type); Basic_Type: is the type of variables that will
be pointed by p. For example : var p:Pointer(integer); this means a pointer
variable p that points to an integer variable. We can use also the syntax of
C language as follows: nt* p; In this declaration, we have the type int for

integers and the type int* for pointers on integer.

On Figure 4.1.3, we show the effect of the declaration of a pointer. As we see, there
is only a memory for the pointer variable, but without any content currently. The

pointer is not yet created, it does not point to anything.

P 44— the name of the pointer

No addess yet

Ox7fff98b499e8 €—— Address of pointer p

Figure 4.2: A declared pointer.

e The allocation of the pointer: We have to understand that the previous declaration
of a pointer variable p reserves only the memory where p is saved, but no memory is
pointed yet by p. To reserve a memory that will be pointed by p, dynamically, we need
an allocation operation. This operation is special to pointers. It is done using specific
statements that allow to allocate dynamically the memory to be pointed (or refereed

by the pointer). This allocation is done by anyone of the following statements:

— p<mnew(); //or it can be written also as: new(p);

27

— p<alloc(); //or it can be written also as: alloc(p);

— p<malloc(); //or it can be written also as: malloc(p);

Any one of the above statements can be used to create a new address (so, to reserve a
memory cell) to which p points. It is also possible to specify the size of the basic type
when the allocation is done as follows: p«alloc(sizeof(integer)); which creates a

pointer p that points on an integer. Idem for the malloc statement.

e Access to the pointed values: after the creation (or allocation), p points now to some
value that can be accessed. The pointed value can be accessed using the following
names: (*p), (p —), or (p”). For example, the following algorithm declares a pointer

p on integers, make an allocation, and accesses the content.

Var p: Pointer(integer);

Begin
new(p); //create the pointer, allocating the memory to be pointed by p
(¥p)<— 3;//access the pointed value and its initialization with value 3

write(xp); //depict the value pointed by p

End.

Figure 4.1.3 shows how the previous algorithm affects the memory.

P 44— the name of the pointer

Ox7fffa0757dd4

Ox7fff98b499e8 4—— Address of pointer p

p)

3 < Value of variable (*p)

Ox7fffa0757dd4 4—— Address of variable (p)

Figure 4.3: A pointer and the pointed value, creation and access.

28

e The release of the pointer: After the using of the pointer (through accessing, updat-
ing, etc), the programmer can at any time free the pointer (i.e., delete the pointer
or deallocate the reserved memory) dynamically. This can be done using one of the

following statements:

— free(p);
— delete(p);

Executing a free(p); on the previous pointer will give the following figure:

P “4— the name of the pointer

Ox7fffa0757dd4

Ox7fff98b499e8 4——— Address of pointer p

*p)

3 < Value of variable (*p)

0x7fffa0757dd4 4—— Address of variable (‘p)

Figure 4.4: A deleted pointer, or a free pointer.

In the above figure, the free operation on p causes the breaking of the link between
p and (*p), which means that the cell (0x7fffa0757dd4) is no more reserved to the

programimer.

e Assignment of Nil constant: Nil is a specific constant that can be assigned to
any kind of pointers. Once p gets Nil, p does not point to any thing. In a correct
programming style, the programmer has to assign the constant Nil to all released

pointers.

Now that we have presented the tools to manage dynamically the memory (by dy-
namic allocation and release), we can introduce the dynamic sequential structures in the
next sections. This chapter will present: Linked Linear Lists (LLL), Linked Bidirectional
Lists (LBL), Stacks, and Queues. These structures are also known as Abstract Data

Types (ADT).

3. Definition (Abstract Data Type): An abstract data type (ADT) is a high level

type which is defined independently of how it will be implemented. The word abstract

29

means that the type is defined without focusing on how it will be actually programmed.
So that, an ADT is characterized basically by a set of operations (called services) that
are provided to its user. We say that an ADT has a specification (description) that de-
scribes the set of its operations in a high level way (usually in an algebraic way). The
following sequential structure will be presented as ADTs before moving to their concrete

implementation which can either static (using arrays) or dynamic (using Pointers).

4.2 Linked Linear Lists

4.2.1 Definition

A linear linked list (LLC) or "Linear linked lists" is a set of links (or elements), dy-

namically allocated, linked together. Schematically, it can be represented as follows:

head

4 links

An element (or link) of an LLC is always a structure (compound object) with two
fields: a Value field containing the information and an Address field giving the address of
the next element. Each link is associated with an address.

A linear linked list is characterized by the address of its first element often called head.
Nil, the address which does not point to any link, used to indicate the end of the list in
the last link.

4.2.2 Representation

Consider the linear chained list represented by the following figure:

l\fad

A [d=B [J—=[c [F-D0 [F»EF [F-[F T

The actual in-memory representation of this list looks like the following:

30

@ | value [Pointer
10 C 4300
head =430 12 F NIL

106 B 10
108 E 12
110 | 4302
4300 D 108
4302 A 106
4304

4.2.3 Declaration

In algorithmic language, we will define the type of a link as follows:

Type TElement = Record
Value : Basic_Type; // any basic type
Next : Pointer(TElement);

Fin;

Instead the keyword record, we can use struct (as in the C language).

Then we need a global variable to be defined as the head of the list as follows:

Var head:Pointer(TElement);

31

4.2.4 Operations

As explained before, A LLL is considered as an abstract data type defined by a set of

operations, as follows:

Create: — LLL; // create an empty list

Insert: LLL x Basic_Type — LLL; // add a value to the list
Search: LLL x Basic_Type — Boolean; // search a value in the list
Delete: LLL x Basic_Type — LLL; // delete a value from the list

4.2.4.1 Implementation of the operations: A Dynamic implementation using

Pointers

Procedure Create();
Begin

Head<+Nil,;
End;

Procedure Insert(x:Basic_Type);
var p: Pointer(Basic_Type);
Begin
//insertion of x at the head of the list

alloc(p); (p->Value)+x; (p->Next)«Head; Head<p;
End;

The following algorithm finds an element z in the list.

32

Function Search(x:Basic_Type) : Boolean;
var p: Pointer(Basic_Type); exist: Boolean;
Begin

exit<—False;

p<«Head;

While (p!=nil and not exist) Do

If ((p->Value)=x) Then

‘ exist «+ True;
Else

‘ p+(p->Next);
End If;

End While;
Search<—exist;

End;

The following algorithm deletes an element = from the list. The element must be firstly
founded then deleted. If there are several occurrences of x, we delete the first occurrence. If
the element x does not exist then no thing is done. The implementation uses two pointers

p which points the z if founded, and pr (i.e. previous) which points on p.

33

Procedure Delete(x:Basic_Type);

Var pre, p: Pointer(Basic_ Type);
Del: Boolean;

Begin

pre<—Head;

p<Head;

If (Head!=nil) Then

If ((Head->Value)=x) Then
Head<—(Head->Next);

Delete(p);
Else
Del<«False;

p+(Head->next);

While (p!=nil and not Del) Do

If ((p->Value)=x) Then
pre«(p->Next);
delete(p);

Del«+True;
Else

pre<—p;

p+(p->Next);
End If;

End While;
End If;

End If;

End;

4.2.5 Other algorithms

e Browse algorithms: access by value, access by position,...
e Update algorithms: insertion, deletion,...

e Algorithms on several LLCs: merger, inter-classification, splitting,...

34

e Sorting algorithms on LLCs: bubble sort, merge sort,...

4.3 Linked Bidirectional Lists

It is an LLC where each link contains both the address of the previous element and the

address of the next element which allows the list to be traversed in both directions.

Head

M var[é]| [e[VAL[é | [e|VAL|6 | [e[VAL[™N |

Déclaration

Type TElement = Record
Valeur : Basic_Type; // designates any type
Prrevious, Next : Pointer(TElement);

End;

Var Head : Pointer(TElement);

4.3.1 Operations

As explained before, A BLL is considered as an abstract data type defined by a set of

operations, as follows:

Create BLL: — BLL; // create an empty list

Insert: BLL x Basic_ Type — BLL; // add a value to the BL-list
Search: BLL x Basic_Type — Boolean; // search a value in the BL-list
Delete: BLL x Basic_Type — BLL; // delete a value from the BL-list

35

4.4 stacks

4.4.1 Definition

A stack is an ordered list of elements where insertions and deletions of elements occur
at one end of the list called the top of the stack.
The principle of adding and removing from the stack is called LIFO (Last In First Out):

"the last one in is the first one out"

Lastin \ / First out

Evolution
of the
stack

]

1

4.4.2 Using of stacks

4.4.2.1 In a web browser

A stack is used to remember visited web pages. The address of each new visited page is
stacked and the user pops the address of the previous page by clicking the "Show previous
page" button.

4.4.2.2 Undoing operations

A word processor’s "Undo Typing" function stores changes to text in a stack.

4.4.2.3 Call management in program execution

Fact(4)=4*Fact(3)=4*3*Fact(2)=4*3%2*¥Fact(1)—=4*3%2%1 —4*3%2—4%6—24

1
2*Fact(1) 2*Fact(1) 2
3*Fact(2) 3*Fact(2) 3*Fact(2) 3*Fact(2) 6
Facti4) 4*Fact(3} 4*Fact(3} 4*Fact(3) 4*Fact(3} 4*Fact(3) 24

36

4.4.2.4 Depth traversal of trees

Consider the following tree:

The depth traversal algorithm is as follows:

Put Root in the stack;
While (The stack is not empty) Do

Remove a node from the stack;
Show its value;
If (Node has children) Then

Add these children to the stack
End If;
End While;

The result will be: A, B, D, E, C, F, G.

4.4.2.5 Evaluation of postfix expressions

For the evaluation of arithmetic or logical expressions, programming languages gener-

ally use the prefix and postfix representation. In the postfix representation, we represent

the expression by a new one, where the operations always come after the operands.

Example

The expression ((a + (bxc))/(c — d) is expressed, in postfix, as follows: be*a + cd — /

To evaluate it, we use a battery. We traverse the expression from left to right, executing

the following algorithm:

37

1+ 1
While (i < Length(Expression)) Do
If (Expression[i] is an Operator) Then
Remove two items from the stack;
Calculate the result according to the operator;

Put the result in the stack;
Else
Put the operand on the stack;

End If;
11+ 1;

End While;

The following diagram shows the evolution of the contents of the stack, by running this

algorithm on the previous expression.

d
c a C c-d
b ©*D) T a+(c*b) - a+(c*b) at+(c™b) /(e —d)

4.4.3 Operations on stacks

We consider that a stack of a set of elements (from a Basic_Type) is an abstract data

type defined by a set of operations, as follows:

Create Stack: — Stack; // create an empty stack

GetTop: Stack — Basic_Type; // returns the value in the top of the stack

Push: Stack x Basic_Type — Stack; // push a given value to the top of the stack
Pop: Stack — Stack; // delete the value from the top, the last added value

Empty: Stack — Boolean; // check the emptiness of the stack

Full: Stack — Boolean; // check if the stack is full, however this operations depends

only on the implementation of the stack

38

Exercise: Give the stack status after performing the following operations on an empty

stack:
push(a), push(b), pop, push(c), push(d), pop, push(e), pop, pop.
4.4.4 Stack implementation

Stacks can be represented in two ways: by arrays or by LLLs:

4.4.4.1 Implementation using arrays

The static implementation of stacks uses arrays. In this case, the stack capacity is
limited by the size of the array. Adding to the stack is done in the ascending direction of

the indices, while removal is done in the opposite direction.

4.4.4.2 Implementation by LLLs

The dynamic implementation uses linear lists. In this case, the stack can be empty,
but can never be full, except of course in the event of insufficient memory space. Stacking
and unstacking in dynamic stacks is at the top of the list.

The following two algorithms "StackAsArray" and "Stack AsSLLL" present two examples

of static and dynamic implementation of stacks of integers.

39

Algorithm StackAsArray;
Var Stack : Array[l..n] of integer; Top : integer;
Procedure Create Stack();
Begin
‘ Top + 0 ;

End;
Function Empty() : Boolean;

Begin
‘ Empty < (top =0) ;

End;
Function Full() : Boolean;

Begin
‘ Full + (Top =n) ;
End;
Procedure Push(x : integer);
Begin
If (Full) Then
Write('Unable to stack, the stack is full!l’)
Else
top <—top+1;
Stack[Top] < x ;
End If;

End;

)

Procedure Pop();

Begin
If (Empty) Then
‘ Write(’Cannot pop, the stack is empty!!’)
Else
‘ Top <+ Top—1,
End If;
End;

Begin

End.
... Using the stack ...

40

Algorithm StackasLLLs;
Type TElement = Record

Value : integer;

Next : Pointer(TElement);
End;
Var P, Top : Pointer(TElement);
Procedure Create Stack();
Begin

‘ Top < Nil ;

End,;
Function Empty() : Booleen,;

Begin
‘ Empty < (Top = Nil) ;

End;
Function GetTop() : integer;

Begin
If (not Empty) Then
GetTop + (Top— > Value) ;
End If;

End;
Procedure Push(x : integer);

Begin
Alloc(P); (P->Value)+ x;

(P->Next)< Top; Top < P;
End;
Procedure Pop();

Begin
If (Empty) Then

‘ Write('Impossible to pop, the stack is empty!!”)
Else

‘ P < Top; Top < (Top->Next); Delete(P);
End If;
End;

Begin
... Using the stack in the main program ...

End. A1

4.4.5 Application example: Filling an area of an image

An image in computing can be represented by a matrix of points ‘Image’ having M
columns and N rows. An element Image[x,y] of the matrix represents the color of the
point p with coordinates (z,y). We propose to write here a function which, from a point
p, spreads a color ¢ around this point. The progression of the spread color stops when it
encounters a color other than that of point p. The following figure illustrates this example,

considering p = (3,4).

0o 1 2 & 4 5 6 7 o 1 2 3 4 5 & 7T
T T T :
1 1
2 2
3 3
4] ¢
5 5
6 6
7 7

To fill, we must go in all directions from point p. This resembles the path of a tree

with the nodes of four threads. The following procedure resolves the issue using a stack.

42

Procedure Fill(I'mage : Array[0..M — 1,0..N — 1] of color; z,y :

color);
Var c¢; : color;
Begin
c1 < Imagelz, y|;
Create;
Push((z,y));
While (= Empty) Do
(x,y)¢— Get_Top;
Pop;
If (Image[z,y] = ¢1) Then
Image[x,y] < ¢;
If (x > 0) Then
‘ Pus((z — 1,y))
End If;
If (x < M —1) Then
| Push((@ + 1,))
End If;
If (y > 0) Then
‘ Push((z,y — 1))
End If;
If (y < N—1) Then
| Push((a,y +1))
End If:
End If;
End While;
End;

integer;

C .

43

4.5 Queues

4.5.1 Definition

The queue is a structure that allows objects to be stored in a given order and removed
in the same order, i.e. according to the FIFO protocol “first in first out’. We always add

an element at the bottom of the list and remove the one at the top.

Téte Queue
Elément 1 | Elément 2 e Elémentn
Retrait Ajout

4.5.2 Operations

As explained before, a queue is considered as an abstract data type defined by a set of

operations, as follows:

Create Queue: — Queue; // create an empty queue

Enqueue: Queue x Basic_ Type — Queue; // add a value to the queue in the head
Dequeue: Queue x Basic Type — Queue; // delete the value in the tail of the
queue

GetHead: Queue — Basic_ Type; //returns the value saved in the head of the queue
GetTail: Queue — Basic_ Type; //returns the value saved in the tail of the queue
Empty: Queue — Boolean; // test if the queue is empty

Full: Queue — Boolean; // test if the queue is full, indeed this operation is optional

and it depends really on the implementation

4.5.3 Using queues

Queues are used, in programming, to manage objects that are waiting for further
processing, such as the management of documents to be printed, programs to be executed,

messages received, etc. They are also used in tree traversals.

44

Exercise

Resume traversing the tree from section 4.4.2.4 (deep traversal) using a queue instead
of the stack.
4.5.4 Implementing Queues

Similar to stacks, queues can be represented in two ways:

e by static representation using tables,

e by dynamic representation using linear linked lists.

4.5.4.1 Static implementation

The static implementation can be done by shifting using an array with a fixed head,
always at 1, and a variable tail. It can also be done by flow using a circular array where

the head and tail are both variable.

1. By shift
He:d 'I‘;:riil
El | E2 | E3 | E4 | E5 | E6 | E7
a—
Dequene Tfil
E2 | E3 | E4 | E5 | E6 | E7

— The Head is fixed at the value 1 forever
— The Tail moves from 0 to n. It can increase or decrease, during the execution.

— The Tail refers (i.e., is an the index) to the last added element in the queue if

the queue is not empty
— The queue is empty if T'ail =0
— Queue is full if T'ail =n

| shift issue on each scroll (i.e., dequeuing)

2. By flow: The queue is represented by a circular table

45

Head

Tail

El

L J

E3

E4

L

E6

— The Head and the Queue moves from 1 to n.

— The Tail refers to en empty (unused cell) all the time. Thus, the last added

element is not in the cell indexed by Tail but it is the previous cell to the cell

indexed by Tail
— The queue is empty if Head = Tail

— The queue is full if (T'ail + 1) mod n = Head

J We sacrifice a cell to distinguish the case of an empty queue from that of a full

queue.

Exercise Think of a solution that avoids sacrificing a square.

46

4.5.4.2 Dynamic Implementation

The dynamic representation uses a linear linked list. Enqueuing is done at the head of
the list and Dequeuing is done at the tail. The queue, in this case, may become empty,

but will never be full.

Head Tail

The two algorithms QueueByFlow and QueueByLLL, at the end of this section, present

examples of implementation, respectively, static and dynamic.

4.5.5 Special queue (Priority queue)

A priority queue is a collection of items into which insertion does not always occur at
the queue. Any new element is inserted into the queue according to its priority. Dequeuing
is always done from the beginning.

In a priority queue, a priority item will take the Head in the queue even if it arrives last.
An element is always accompanied by information indicating its priority in the queue.
The implementation of these queues can be an array or a LL-list, but the most efficient and

widely used implementation uses special trees called "heaps’ (To be presented in chapter

5).

47

Var Queue : Array[l..n] of integer;

Procedure Create Queue();
Begin
‘ Head + 1; Tail + 1;

End;
Function Empty() : Boolean;

Begin
‘ Empty < (Head = Tail) ;

End;
Function Full() : Boolean;

Begin

‘ Full < (((Tail + 1) mod n) = Head) ;

End;

Function Full() : Boolean;

Begin

Full < (((Tail + 1) mod n) = Head) ;

End;

Procedure Deueue();

Begin
If (Empty) Then

Else

End If;
End;

‘ Head < (Head + 1) mod n ;

Head, Tail :

integer;

‘ Write(’Impossible to dequeue, queue is empty!!”)

48

Procedure Enqueue(x : integer);
Begin
If (Full) Then
Write('Impossible to enqueue, the queue is fullll’)
Else
Queue[Tail] + x ;

Tail < (Tail + 1) mod n ;
End If;

End;

Y

Function GetHead() : integer;
Begin
If (not Empty) Then
GetHead < Queue[Head] ;
End If;

End;
Function GetTail() : integer;

Begin
If (not Empty) Then
If (Tail=1) Then
‘ GetTail < Queue[n]
Else
‘ GetTail < Queue[Tail — 1] ;
End If;
End If;
End;

... Using the queue ...

Algorithm 2: QueueByFlow

49

Type TElement = Record
Value : integer;
Next : Pointer(TElement);
End;
Var P, Head, Tail : Pointer(TElement);
Procedure Create Queue();
Begin
‘ Head + Nil ; Tail + Nil ;

End;
Function Empty Queue() : Booleen,;

Begin
‘ Empty Queue + (Head = Nil) ;

End;
Procedure Enqueue(x : integer);

Begin
Alloc(P); (P->Value)<x; (P->Next)<«Nil;
If (Tail = Nil) Then
‘ Head + P ; // case of an empty queue
Else
‘ (T'ail— > Next) + P,

End If;

Tail + P ;

End;

Procedure Dequeue();

Begin
If (Empty Stack) Then
Write(’Cannot delete any element, the queue is empty!!”)

Else
P + Head;

Head + (Head— > Next);

Delete(P); //free the cell
End If;

End;
... Using the queue in the main program later...

50

Function GetHead() : integer;
Begin
If (not Empty) Then
GetHead < (Head— > Value) ;
End If;
End;

)

Function GetTail() : integer;
Begin
If (not Empty) Then
GetTail + (Tail— > Value)
End If;
End;

... Using the queue in the main program later...

Algorithm 3: QueueByLLL

51

	4 Sequential Structures

