Chapter 2

Recursivity

2.1 Principle

In mathematics, definitions by induction (by recursion or recursively) are quite com-
mon. For example the following sequence F'(n) called Fibonacci is recurrent because the

function itself is involved in its definition:

FO)=F(1)=1
Fn)=Fn—-1)4+F(n—-2) Yn>1

In computer science, recursion (i.e. recursivity) is an important concept, it repre-
sents an elegant style of programming. It consists of subdividing a problem into several
sub-problems then solving each sub-problem and then combining the small solutions to
construct the overall solution. This principle is called "Divide and conquer" or " Divide

and solve".

2.2 Recursive algorithm

A program (a function, a procedure) is called recursive if it calls itself, that is to say
if it contains a call to itself in its definition, otherwise it is called iterative.

In the following example, we want to calculate the sum of integers from 0 to n. The
Suml function calculates the sum iteratively while the SumR function calculates it
recursively according to the following principle: " The sum of the integers from 0 to n is

equal to n plus the sum of integers from 0 ton —1".

n n—1
do=n+)
i=0 i=0
0
>, =0
i=0
Function Suml(n : integer) : integer; Function SumR(n : integer) : integer;
Var S.i: integer; Begin
Begin If (n=0) Then
S 0; ‘ SumR <+ 0O;
For i From 1 to n Do Else
S« 5+5 ‘SumR%n—&-SumR(n—l);
End For; End If:
Suml < S; End;
End; // Recursive sum function
// Tterative sum function

Executing a SumR(5) call for example is done as follows:

e Call SumR(5)

5 4 (SumR(4) = ?)

- Call SumR(4)

-4+ (SumR(3) — 7)

- Call SumR(3)

' _3 4 (SumR(2) — ?)

- Call SumR(2)

-2+ (SumR(1) = 7)

- Call SumR(1)
11 (SumR(0) — ?)
| - Call SumR(0)
; - Return 0

- Return 1 (1 + 0)

- Return 3 (2 + 1)
' - Return de 6 (3 + 3)

- Return de 10 (4 + 6)

e Return 15 (5+10)

Saving the different values during these calls is done in the program execution stack.

The execution stack of the current program is a memory location intended to store
the parameters, local variables as well as the return addresses of the functions currently

being executed. It works according to the LIFO (Last-In-First-Out) principle: last in

first out.

The stack of the PP program calling the SumR(3) function will contain the address

of the calling instruction, i.e. @QRetPP, and the values of its variables (VV) at the time of

the call. Likewise, a call from the SumR function will add to the stack the address of the

SumR function, the address of the call instruction, i.e. @RetR and the value of n. The

evolution of the stack will therefore be as follows:

SumR,
@QRetR,
n=0
SumR, SumR, SumR,
@QRetR, @RetR, @RetR,
n=1 n=1 n=1
SumR, SumR, SumR, SumR, SumR,
@RetR, @RetR, @RetR, @RetR, @RetR,
n=2 n=2 n=2 n=2 n=2
SumR, SumR, SumR, SumR, SumR, SumR, SumR, SommeR,
@QRetR, @RetR, Q@RetR, @QRetR, @QRetR, @RetR, QRetR, @RetR,
n=3 n=3 n=3 n=3 n=3 n=3 n=3 n=3
PP, PP, PP, PP, PP, PP, PP, PP, PP, PP,
@RetPP, @QRetPP, QRetPP, @RetPP, @RetPP, QRetPP, QRetPP, QRetPP, @RetPP, QRetPP,
Vv vv vv Vv Vv Vv vV Vv vV A%

t=0

1

2

3

4

5

6

7

8

9

10

11

Attention ! The stack has a fixed size, improper use of recursion can lead to stack

overflow.

2.3 Termination

As in the case of a loop, you need a stopping case where you do not make a recursive call.

The evolution of recursive calls must necessarily lead to an initial case where no recursive

calls are made. Otherwise the calls will be infinite and there will be a stack overflow. The

following function, for example, produces a stack overflow with the call SumR(2) since n

starts from 2 and is incremented with each call and the condition (n = 0) will never be

satisfied :

Function SumR(n : integer) : integer;
Begin
If (n=0) Then

‘ SumR + 0;
Else

‘ SumR < n + SumR(n + 1);
End If:
End;

2.4 Examples

2.4.1 The factorial

Factorial n, denoted n!, is the product of all integers from 1 up to n, i.e. 1 x 2 x 3 x
4%x..Xn

For example : 5! =1*2*3*4*5 =120

Then : n! = (n—1)! x n and

So for this example : 5! = 41*5

10

Function FactI(n: integer) : integer;
Var M,i: integer;
Begin
M « 1;
For i From 1 to n Do
M+ M x i
End For;

Factl «+ M,
End;
// Iterative factorial function

24.2 GCD

Function FactR(n : integer) : inte-
ger;
Begin
If (n <1) Then
‘ FactR < 1;
Else
‘ FactR + n X FactR(n — 1);
End If;
End;

// Recursive factorial function

The Greatest Common Divisor (GCD) of two integers A and B is calculated by making

successive subtractions between A and B until arriving at two equal integers which represent

the GCD.

For example:

A |42] 18|18

12

6

B|24]24]| 6

6

6

We notice that the GCD of 42 and 18 is the same as that of 18 and 24 and the same

as that of 18 and 6...and so on, hence the recursive definition:

A

GCD(A,B)={ GCD(A - B, B)
GCD(A, B — A)

And hence the recursive function RgCD:

11

if A=B
if A>B
else

Function It GCD(A, B : integer) : inte-
Function R_GCD(A, B : integer) : integer;

ger;
. Begin
Begin It (A— B) Then
While (A # B) Do
If (A > B) Then ‘ R_GCD «+ A;
‘ A A Else
oAy If (A > B) Then
Else
‘ R GCD+ R_GCD(A- B, B),
‘ Bep-d Else
End If;
‘ R GCD <+ R _GCD(A,B - A),
End While;
End If;
It GCD + A; End If:
End,;

End;

// Tterative GCD functi // Recursive GCD function
erative unction

2.4.3 Fibonacci sequence

The calculation of the Fibonacci sequence seen previously is recursive in nature. Writing

the corresponding algorithm is intuitive:

Function Fib(n : integer) : integer;
Begin
If (n <1) Then

‘ Fib <+ 1;
Else

‘ Fib < Fib(n — 1) + Fib(n — 2);
End If;
End;

// Recursive Fibonacci Function

The execution of the F'ib(4) call can be imagined as follows:

12

Note: The recursive solution is not always the most efficient. For example, in the case
of this function the calculation of Fib(1) is done several times.
2.5 Importance of order of recursive calls

The order of a recursive call in relation to the other instructions of an algorithm consid-

erably influences the result obtained. The following two procedures illustrate an example:

Procedure Depict(n : integer); Procedure Depict(n : integer);
Begin Begin
If (n>1) Then If (n>1) Then
Write(n); Depict(n-1);
Depict(n-1); Write(n);
End If; End If;
End,; End;
Results forn =5: 54321 Results forn =5: 12345

2.6 Types of recursion

Depending on the number of calls and their location the recursion can be of several

types:

2.6.1 Simple recursion

The procedure or function is called itself only once without a body such as the FactR

function in the previous example.

13

2.6.2 Multiple recursion

Recursion is said to be multiple if the procedure or function contains more than one
recursive call in its body such as the F'ib function in the previous example.
2.6.3 Nested recursion

Recursion is said to be nested if the recursive call contains a parameter which is also a

recursive call such as:

F < F(n, F(n));

2.6.4 Cross recursion

Recursion is said to be crossed between two procedures (function) if each of them calls

the other as in the following example:

Function Even(n : integer) : boolean;
Begin
If (n =0) Then
‘ Even < true;
Else
‘ Even < Odd(n-1);

End If;
End;

Function Odd(n : integer) : boolean;
Begin
If (n =0) Then
‘ Odd < false;
Else
‘ Even < Even(n-1);

End If;
End;

Although neither function calls itself, recursion exists. It is also called mutual.

14

