The UPPAAL tool

M1-GLSD
2019-2020
TOV
L.Kahloul

Outlines of the course

What and why?

Modelling language: templates, constants &
variables, synchronisation, locations:
committed & urgent, expressions: select,
guard, synchronisation, update, invariant

Verification: TCTL
Simulation

What and Why is Uppaal?

Uppaal= developed jointly by Basic Research in
Computer Science at Aalborg University in Denmark
and the Department of Information Technology at
Uppsala University in Sweden.

Tool: Specification+Verification+Simulation

Implementation: Server (specification)+client (query
language for verification)

Programming: Java, C++, xml|

http://www.brics.dk/
http://www.brics.dk/
http://www.it.uu.se/

Modelling language of Uppaal
“what is in?”

* Besides timed-automata, the Uppaal offers a rich
language that facilitates modelling;

* The language used by uppaal is similar to a
programming language based on C language;

 The language of uppaal introduces the concepts:
Template, constant, bounded integer variables, binary
synchronisation, broadcast channels, urgent
synchronisation, urgent or committed locations,
arrays, initialiser, record types, custom types, user
function

Modelling language of Uppaal
“templates”

* Template: automaton is considered as a
template. It can be instantiated and

parameterised with some parameters.
K3 uPPAAL =8|X

File Edit Wiew Tools Options Help

Dﬁﬁ@ﬂ SR

| Editor | Simulator | Verifier

¢ e Declarations
i ¢ Syskem declarations

Modelling language of Uppaal
“templates”

B3 UpPaAL

File Edit Wiew Tools Options Help

La@ aaa @@

I Editor ! Simulator | Yerifier |
&- Drag out -e: Mame; |Templakte Parameters:

) Project
----- # Declarations
;Y Termplate
. e ® Declarations
b System declarations

Modelling language of Uppaal
“templates”

LURRAAL

File Edit “iew Tools Options Help

Lad Q& | [1@ >0

Editor | Simulator Verifier

f' Drag out %:,)’}” Place template instantiations here.

) Project Process = Tewmplate();
- @ Declarations
°§§§, Template

. - # Declarations
L i | | system Process;

/4 List one or more processas to be composed into a system.

Modelling language of Uppaal

“templates”

@UF’PML

File Edit “iew Tools Ophions Help

Dalaaa@Baw-e

fEaIEDF ! Simulakar "' Yerifier "

4

Pararmeters

ink x, ink Sy

_}F'n:ujecl:
. @ Declarations

-'191.

b i Declaratlnns

L@ System declarations @

y=x+1

-0

Modelling language of Uppaal

“templates”

@ URPAAL

File Edit ‘“iew Tools Options Help

P' Drag out 'a:;’}" Place template instantiations here.
() Project int yl, vZ;

- Declarations
HmﬁiTemmam

- e Declarations

Processl = Template(l, yl);
Process? = Template(2, vZ);

Syshem declarations

/7 List ome or more proceasss to be composed into & apatem

system Processl, Processi;

Modelling language of Uppaal

“constants and variables”

* constant: const name value;
const int N=5; const int x=2;

* bounded integer variables:
Int[min, max] name;
-32768 to 32768
Example: Int [2, 4] x;

10

Modelling language of Uppaal
“synchronisation”

* binary synchronisation: this requires the declaration of
a channel between two templates (or automata).

chan name;
Example: chan move;

Two edges labelled move? (to receive) and move! (to
send) must exist, respectively, in the two automata

* Send and receive are blocking actions

11

Modelling language of Uppaal
“synchronisation”
* broadcast channels: this requires the declaration of a

broadcast channel between several templates (or
automata).

broadcast chan name;
Example: boradcast chan move;

An edge labelled move! (to send) and several move? (to
receive) must exist, respectively, in the sender and the
receivers automata

* send is not a blocking action

Modelling language of Uppaal

“synchronisation”

* urgent synchronisation: the declaration of the
channel is preceded by: urgent.

Example: urgent chan move;

* Edges using urgent channels for
synchronisation cannot have time constraints,
i.e., no clock guards.

13

Modelling language of Uppaal

“locations: urgent, commited”

urgent locations: with a U inside the location. time is not
allowed to pass when the system is in an urgent location.

How can we model this using the usual TA?

committed locations: with a Cinside the location. It is an
urgent location & in a committed state (a state where at least
one process is in a committed location) the system must leave
the committed location in the next transition (i.e. the only
possible transition is the one that fires the edge outgoing
from a committed location).

Modelling language of Uppaal

“locations: urgent, commited”: example

* How can the following processes work?

UL UL
@ }@ }O @ ®=1 }@ ¥==2 ;O
CL
@ }@ }O CL
~ @ x:=1 }@ }O
UL
@ W=7 @ ¥=3 .

CL
@ W= }© w=2 }O

e Consider the two cases: x is shared or local.

Modelling language of Uppaal

* arrays, : we can have arrays of clocks,
channels, constants and integer variables:

chan c[4];

clock a[2];

const int c[2]={0,2};
int[3,5] u[7];

Modelling language of Uppaal

e arrays of channels:
chan c[n]:

 The valueiis then used both as an array index
when deciding what channel to synchronize
on,

* and as an argument that can be used after.

17

Modelling language of Uppaal

 Example: even the three processes p, p0, p1l
use the same channel ¢, but ¢[1] synchronises,
only, p with p0

P s

Modelling language of Uppaal

initialiser, are used to initialise integer variables and arrays
of integer variables. Example:

inti=2;
inti[3] =11, 2, 3};

record types : are declared with the struct construct like in
C

struct {
int x;
inty;
} str;

Modelling language of Uppaal

* custom types : are defined with the C-like
typedef construct.

typedef struct {
Int X;
int y;
} str_t;
str_t str;
str.x=1;

Modelling language of Uppaal

* User function : defined either globally or locally to

templates.

 Template parameters are accessible from local
functions. The syntax is similar to C except that there is

no pointer.

int f(){
str_t str;

str.x=1;
return str.x;

Modelling language of Uppaal

“expressions”

* Expressions range over clocks and integer
variables.

* Four kinds of expressions: select, guard,
synchronisation, update, invariant

22

Modelling language of Uppaal

“expressions”

e Select: (on edges)
Syntax: namel: typel, name2:type?2, ...

Semantics: assign randomly a value form the
type to the name

Example:
* x:int; selects an integer random value;

* x:int[2,3]; selects an integer random value
inside the interval [2,3]

Modelling language of Uppaal

“expressions”

* Deduct the behaviour of this example

p1

24

Modelling language of Uppaal

“expressions”

* Guard: (on edges)

Syntax: expressionl op valuel and expression2
op value2 and ...

Op in {==/ <; >/ <=/ >=}

Example: x==2 and y<=3 and x-y<=0 and ...

Modelling language of Uppaal

“expressions”

* Synchronisation: (on edges)
Syntax: chan_name!

chan_name?

Semantics: synchronise with another transition in
another automaton

* Update: (on edges)
Syntax: var_namel:=valuel, var _name2:=value2, ...

Example : x:=1, y:=2, z:=4, ...

Modelling language of Uppaal

“expressions”

* Invariant: (on locations)

Syntax: expressionl op valuel and expression2
op value2 and ...

opin{==, <, >, <=, >=}

Example: x==2 and y<=3 and and x==y and x-
y<=0 and ...

Remarks: (1) x, y can be variables or clocks

Verification with Uppaal
“TCTL”

e Two kinds of formulae

1) State formulae describe individual states:
(name_proc.name_loc)

2) Futur (F) is written: <>, and Globaly (G) is writen []

3) Path formulae (quantify over paths or traces of the
model):

- reachability: E<> ¢
- safety: something good is invariantly true. A[] ¢
- liveness: something will eventually happen A<> ¢

Verification with Uppaal
“TCTL”: example

loc loc?

wo="1

If proc is the name of this process,

* A<> proc.loc2 : the location loc2 is reachable
eventually (<>) in all paths (A),

* A[] proc.loc2 : the location loc2 is reachable
gloably ([]) in all paths (A)

* A<>proc.x>=1?7??
* E<>proc.x>=1???
* p-->q is equivalent to A[](p=>A<>q)

