
The UPPAAL tool

M1-GLSD
2019-2020

TOV
L.Kahloul

1

Outlines of the course

• What and why?

• Modelling language: templates, constants &
variables, synchronisation, locations:
committed & urgent, expressions: select,
guard, synchronisation, update, invariant

• Verification: TCTL

• Simulation

2

What and Why is Uppaal?

• Uppaal= developed jointly by Basic Research in
Computer Science at Aalborg University in Denmark
and the Department of Information Technology at
Uppsala University in Sweden.

• Tool: Specification+Verification+Simulation

• Implementation: Server (specification)+client (query
language for verification)

• Programming: Java, C++, xml

3

http://www.brics.dk/
http://www.brics.dk/
http://www.it.uu.se/

Modelling language of Uppaal
“what is in?”

• Besides timed-automata, the Uppaal offers a rich
language that facilitates modelling;

• The language used by uppaal is similar to a
programming language based on C language;

• The language of uppaal introduces the concepts:
Template, constant, bounded integer variables, binary
synchronisation, broadcast channels, urgent
synchronisation, urgent or committed locations,
arrays, initialiser, record types, custom types, user
function

4

Modelling language of Uppaal
“templates”

• Template: automaton is considered as a
template. It can be instantiated and
parameterised with some parameters.

5

Modelling language of Uppaal
 “templates”

6

Modelling language of Uppaal
 “templates”

7

Modelling language of Uppaal
 “templates”

8

Modelling language of Uppaal
 “templates”

9

Modelling language of Uppaal
 “constants and variables”

• constant: const name value;

 const int N=5; const int x=2;

• bounded integer variables:

Int[min, max] name;

-32768 to 32768

Example: Int [2, 4] x;

10

Modelling language of Uppaal
 “synchronisation”

• binary synchronisation: this requires the declaration of
a channel between two templates (or automata).

chan name;

Example: chan move;

Two edges labelled move? (to receive) and move! (to
send) must exist, respectively, in the two automata

• Send and receive are blocking actions

 11

Modelling language of Uppaal
“synchronisation”

• broadcast channels: this requires the declaration of a
broadcast channel between several templates (or
automata).

broadcast chan name;
Example: boradcast chan move;

An edge labelled move! (to send) and several move? (to

receive) must exist, respectively, in the sender and the
receivers automata

• send is not a blocking action

12

Modelling language of Uppaal
“synchronisation”

• urgent synchronisation: the declaration of the
channel is preceded by: urgent.

Example: urgent chan move;

• Edges using urgent channels for
synchronisation cannot have time constraints,
i.e., no clock guards.

13

Modelling language of Uppaal
“locations: urgent, commited”

• urgent locations: with a U inside the location. time is not
allowed to pass when the system is in an urgent location.

How can we model this using the usual TA?

• committed locations: with a C inside the location. It is an
urgent location & in a committed state (a state where at least
one process is in a committed location) the system must leave
the committed location in the next transition (i.e. the only
possible transition is the one that fires the edge outgoing
from a committed location).

why we use these locations ?????????

14

Modelling language of Uppaal
“locations: urgent, commited”: example

• How can the following processes work?

• Consider the two cases: x is shared or local.
15

Modelling language of Uppaal

• arrays, : we can have arrays of clocks,
channels, constants and integer variables:

chan c[4];

clock a[2];

const int c[2]={0,2};

int[3,5] u[7];

16

Modelling language of Uppaal

• arrays of channels:

chan c[n]:

• The value i is then used both as an array index
when deciding what channel to synchronize
on,

• and as an argument that can be used after.

17

Modelling language of Uppaal

• Example: even the three processes p, p0, p1
use the same channel c, but c[1] synchronises,
only, p with p0

18

Modelling language of Uppaal

• initialiser, are used to initialise integer variables and arrays
of integer variables. Example:

int i = 2;
int i[3] = {1, 2, 3};

• record types : are declared with the struct construct like in
C

struct {
int x;
int y;
} str;

19

Modelling language of Uppaal

• custom types : are defined with the C-like
typedef construct.

typedef struct {

int x;

int y;

} str_t;

str_t str;

str.x=1;

20

Modelling language of Uppaal

• User function : defined either globally or locally to
templates.

• Template parameters are accessible from local
functions. The syntax is similar to C except that there is
no pointer.

int f(){
str_t str;
str.x=1;
return str.x;

}

21

Modelling language of Uppaal
“expressions”

• Expressions range over clocks and integer
variables.

• Four kinds of expressions: select, guard,
synchronisation, update, invariant

22

Modelling language of Uppaal
“expressions”

• Select: (on edges)

Syntax: name1: type1, name2:type2, …

Semantics: assign randomly a value form the
type to the name

Example:

• x:int; selects an integer random value;

• x:int[2,3]; selects an integer random value
inside the interval [2,3]

23

Modelling language of Uppaal
“expressions”

• Deduct the behaviour of this example

24

Modelling language of Uppaal
“expressions”

• Guard: (on edges)

Syntax: expression1 op value1 and expression2
op value2 and …

op in {==, <, >, <=, >=}

Example: x==2 and y<=3 and x-y<=0 and …

25

Modelling language of Uppaal
“expressions”

• Synchronisation: (on edges)

Syntax: chan_name!

 chan_name?

Semantics: synchronise with another transition in
another automaton

• Update: (on edges)

Syntax: var_name1:=value1, var_name2:=value2, ...

Example : x:=1, y:=2, z:=4, …

26

Modelling language of Uppaal
“expressions”

• Invariant: (on locations)

Syntax: expression1 op value1 and expression2
op value2 and …

op in {==, <, >, <=, >=}

Example: x==2 and y<=3 and and x==y and x-
y<=0 and …

Remarks: (1) x, y can be variables or clocks

27

Verification with Uppaal
“TCTL”

• Two kinds of formulae

1) State formulae describe individual states:
(name_proc.name_loc)

2) Futur (F) is written: <>, and Globaly (G) is writen []

3) Path formulae (quantify over paths or traces of the
model):

 - reachability: E<> ϕ

 - safety: something good is invariantly true. A[] ϕ

 - liveness: something will eventually happen A<> ϕ

 28

Verification with Uppaal
“TCTL”: example

If proc is the name of this process,
• A<> proc.loc2 : the location loc2 is reachable

eventually (<>) in all paths (A),
• A[] proc.loc2 : the location loc2 is reachable

gloably ([]) in all paths (A)
• A<>proc.x>=1 ???
• E<>proc.x>=1 ???
• p-->q is equivalent to A[](p=>A<>q)

29

